If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24m^2+19m=0
a = 24; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·24·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*24}=\frac{-38}{48} =-19/24 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*24}=\frac{0}{48} =0 $
| 5=z/3-2 | | -6c-3c+-5c-(-13c=6 | | 68+9x-5=180 | | 64=8(p-86) | | 10(3b+3)-3=-93 | | X-1=-16x+16 | | 20(5m+1)=620 | | −24+6x= −6 | | 5(b+7)=75 | | 4x-4=-6x+3 | | 3(2x+10)=156 | | x+1/1-5/2=-2/x | | 4.2(x-2.7)=254.2 | | c+14/7=5 | | 2x+16x+107=0 | | x+(x+50)+(x-10)=100 | | 32=21b | | .5(x+34.65)=37.8 | | 4x+2=14.5 | | 12+15d=120 | | 2.6=-2t | | 154/9=2/3x-2/9 | | 2x=4-12= | | 1/3(3.14)=(2x13) | | k/4+15=16 | | 5(d+10)=100 | | 16s+12=144 | | 4x-3=3(3x-4) | | 4=t+5/8 | | -10/9x-8/9=8 | | u/3+11=13 | | 5(e=6)=4(e+7) |